Полный текст
Корни цикория содержат обширный набор алкалоидов, гликозидов, полифенольных соединений, витаминов, полисахарид инулин и другие вещества. Настои и настойки цикория эффективны при воспалительных процессах в желудочно-кишечном тракте, заболеваниях печени, желчного пузыря, почек, желчнокаменной болезни и др. [3,4]. Инулин, выделенный из цикория, оказывает гипогликемическое действие и используется как заменитель крахмала и сахара при сахарном диабете [1]. К инулинсодержащим относят также корни одуванчика и клубни топинамбура [6, 7]. В последнее время предпринимается широкомасштабное возделывание цикория и производство сухих водорастворимых экстрактов из его корней во многих странах, в том числе и в России, где ведущим центром этой промышленности является г. Ростов Ярославской области. Вполне естественно, что высокообъемному производству требуются экспрессметоды оценки продукции, например, основанные на спектрофотометрии, как малозатратной и достаточно точной методике. Несмотря на большую практическую значимость фотометрические параметры фитопрепаратов цикория остаются малоизученными [2], хотя могут служить тестами, например, при их контроле и стандартизации. Приведенные соображения обусловили цель работы - определения спектрофотометрических параметров извлечений из указанных инулинсодержащих растений и промышленных образцов сухих экстрактов из корней цикория, что может применяться как основа оптических тестов их качества. Материал и методы. В опытах использовали цикорий обыкновенный (Cichorium intybus L.) семейства астровых (Asteraceae) из европейской части России, промышленные образцы сухого экстракта «Цикорий растворимый порошкообразный» производства компаний Indian Coffee Alliance LLP (Индия) и ООО «Кофейная компания «Вокруг света» (Россия). Для сравнения брали клубни топинамбура (Helianthus tuberosus L.) и корни одуванчика лекарственного (Taraxacum officinale Wigg.) из того же семейства, что и цикорий, произрастающих в Приморском крае. Стандартными способами [4] готовили водные настои и настойки на 40%-ном этаноле, сухие экстракты растворяли в таких же растворителях. Спектры поглощения извлечений и растворов (р-р) регистрировали в диапазоне 230-400 нм на цифровом спектрофотометре UV-2051PC (Shimadzu, Япония), нормировали по наибольшему из максимумов и обрабатывали по описанной ранее авторской методике [2]. Результаты исследования. Для зарегистрированных нормированных абсорбционных оптических спектров в таблице представлены длины волн и соответствующие им оптические плотности максимумов, точек перегибов и ступенек, крутизна последних, а также ширина полос поглощения (ПП). Согласно полученным данным, максимумы спектров всех исследованных извлечений располагались в ультрафиолетовом диапазоне (240-340 нм). Спектры поглощения настоя и настойки на корнях цикория оказались довольно близки друг к другу и включали по два гладких максимума. Первые максимумы, наиболее высокие, имели узкие ПП, вторые максимумы были несколько ниже (на 3-8%) при ПП более широкой (в 1,6-2 раза) по
Показано, что спектры поглощения настоев на подземных частях цикория, одуванчика и топинамбура идентичны, что указывает на общность в них суммы веществ. Абсорбционные спектры экстрактов корней цикория, изготовленных в России и Индии, довольно близки, что указывает на тождественность веществ в конечных продуктах. Однако спектры поглощения растворов сухих экстрактов и настоев корней цикория значительно различаются. По-видимому, при изготовлении сухих экстрактов из корней цикория вещества, обеспечивающие наличие спектральных максимумов, подвергаются превращениям, и химический состав искажается.