Полный текст
Д.П. Скачков, А.Л. Штилерман, С.С. Целуйко
Кросслинкинг роговичного коллагена
Амурская государственная медицинская академия, 675000, ул. Горького, 95, тел. 8-(4162)-52-08-28, г. Благовещенск
Контактная информация: Д.П. Скачков, e-mail: doc8012@rambler.ru
Резюме:
В настоящее время наряду с хирургическими технологиями активно внедряются новые методики лечения патологии роговицы. Одним из таких методов является метод роговичного коллагенового кросслинкинга, который представляет собой фотополимеризацию стромальных волокон и образование стабильных химических связей, возникающих в результате комбинированного воздействия фотосенсибилизирующего вещества (рибофлавина) и ультрафиолетового света. В результате фотополимеризации образуются новые дополнительные внутри- и межфибриллярные связи, что изменяет прочность и устойчивость ткани роговицы.
Ключевые слова:
кросслинкинг, коллаген, роговица
D.P. Skachkov, A.L. Shtilerman, S.S. Tseluyko
Corneal collagen crosslinking
Amur State Medical Academy, Blagoveschensk
Summary:
Currently, along with surgical techniques surgeons actively introduce new methods of treatment of corneal pathologies. One of such method is corneal collagen cross-linking , which is a photopolymerization of stromal fibers and the formation of stable chemical bonds resulting from the combined effects of a photosensitizing substance (riboflavin) and ultraviolet light. As a result, new photopolymerization additional intra-and interfibrillar connection forms. It changes the strength and stability of the corneal tissue.
Key words:
cross-linking, collagen, cornea
Введение
Кросслинкинг - образование химических связей между белками и другими крупными молекулами, которые, как правило, делают материал сильнее и устойчивее к распаду. В кросслинкинге роговичного коллагена используется фотоокислительная реакция, возникающая при взаимодействии фоточувствительного рибофлавина и ультрафиолетового излучения с длиной волны 370 нм [1].
В 1983 году S. Ono и H. Hirano описали наличие рибофлавина в хрусталике. H.M. Jerigan, et al. (1981) показали значение фотоокислительного влияния рибофлавина на хрусталик и его роль в катарактогенезе и уплотнении хрусталиковых белков. В 1992 году P.J. Miln и R. G. Zika, исследуя различные фотосенсибилизаторы, продемонстрировали высокую эффективность рибофлавина в сочетании со светом длиной волны более 300 нм. В 2003 году G. Wollensak, et al. достигли прорыва в клиническом применении кросслинкинга в лечении прогрессирующего кератоконуса с использованием рибофлавина и UVA. Авторы с помощью электронной микроскопии подтвердили факт "склеивания" фибрилл, утолщения коллагеновых волокон в роговице под воздействием рибофлавина и ультрафиолетового излучения, что привело к повышению биомеханической устойчивости ткани [4, 5, 25, 26].
В человеческой роговице коллагеновые волокна ориентированы преимущественно горизонтально и вертикально (под углом 90° и 180°), параллельно друг другу и поверхности роговицы, что определяет ее кривизну и прозрачность [7, 13]. Подобная закономерность имеет место на большей части роговицы, за исключением полосы шириной 2 мм вдоль лимба. Коллагеновые волокна, идущие от лимба до лимба, связаны между собой в передне-заднем направлении с помощью матриксных белков (протеогликанов и др.), а также коллагена 4-го типа, являющегося своеобразным "мостом" между коллагеновыми фибриллами 1-го типа [6, 17]. Кератоциты благодаря наличию отростков, также участвуют в образовании поперечных связей, взаимодействуя друг с другом и коллагеновыми фибриллами. Известно, что биомеханические свойства роговицы зависят от состояния волокон коллагена, межколлагеновых связей их структурной организации и могут меняться при различных патологических процессах [9, 10, 11].
Обсуждение
В кросслинкинге роговичного коллагена используется фотоокислительная реакция, возникающая при взаимодействии фоточувствительного рибофлавина и ультрафиолетового излучения с длиной волны 370 нм, являющейся пиковой для абсорбции рибофлавина [8].
Длина волны в 370 нм была выбрана в связи с высокой эффективностью получения эффекта кросслинкинга и максимальной безопасностью для сетчатки. При кросслинкинге возникают фотохимические реакции, которые дифференцируются в зависимости от наличия кислорода на реакции 1-го типа - анаэробные и 2-го типа - аэробные. При кросслинкинге роговичного коллагена фотосенсибилизатор - рибофлавин, поглощая энергию UVA, превращается в, так называемое, триплетное состояние. При 1-м типе фотохимической реакции триплетный рибофлавин взаимодействует непосредственно с белками коллагена. А в ходе реакции 2-го типа триплет рибофлавин взаимодействует с основной молекулой кислорода, образуя синглетный кислород, или супероксид-анион. Эти формы кислорода реагируют с различными молекулами, вызывая химические ковалентные связи между молекулами коллагена и, возможно, протеогликанами [27, 28, 29, 30].
До внедрения нового метода в клиническую практику было проведено большое количество экспериментальных работ, доказавших его безопасность и эффективность [20, 24].
В экспериментах было доказано значительное повышение устойчивости ткани роговицы кроликов к механическому воздействию после процедуры кросслинкинга. В другой серии работ в результате экспериментально индуцированного кросслинкинга роговичного коллагена ригидность человеческой роговицы возросла приблизительно на 300 %, роговицы свиней - на 75 %. Повышение биомеханической ригидности ткани авторы связывают с фактом "склеивания" фибрилл и увеличения толщины коллагеновых волокон [14, 15, 18, 31].
Экспериментальные исследования подтвердили двукратное повышение устойчивости роговицы после комбинированного воздействия рибофлавина и ультрафиолетового излучения к действию ферментов: пепсина, трипсина и коллагеназы. Стабилизирующий биохимический эффект кросслинкинга может быть объяснен изменением третичной структуры коллагеновых фибрилл и блокированием специфических участков, взаимодействующих с ферментами. Данный факт объясняет эффективность метода в лечении язвы роговицы, а также частично обусловливает остановку прогрессирования кератоконуса, в патогенезе которого также играет роль повышенная активность коллагеназы [29, 30, 31].
Помимо биомеханического и биохимического эффекта, процедура кросслинкинга роговичного коллагена ведет к формированию повышенной устойчивости роговицы к термическому воздействию [21]. Денатурация коллагена с разрушением ковалентных связей между молекулами в роговицах, подвергшихся комбинированному воздействию UVA и рибофлавина, происходила при более высокой температуре, чем в контроле [23].
Во всех проведенных исследованиях эффект кросслинкинга оказался максимальным в передних отделах стромы толщиной не более 300 мкм [15]. Это связано с высокой степенью абсорбции излучения в присутствии рибофлавина и поглощением до 95 % излучения на уровне передних и средних слоев стромы. Данный факт объясняет преимущественно переднюю локализацию зоны утолщения коллагеновых волокон, асимметрию между передними и задними отделами стромы относительно устойчивости к ферментному, механическому и термическому воздействию, а также обусловливает минимальную степень воздействия ультрафиолетового излучения на эндотелий роговицы, хрусталик и другие структуры глаза [2, 26, 28,].
Для подтверждения безопасности процедуры была проведена дополнительная серия экспериментальных работ. Специфический цитотоксический эффект на эндотелий роговицы отмечался при интенсивности ультрафиолетового излучения на уровне эндотелия 0,65 Дж/см2 (0,36 МВт/см2), что вдвое превышает мощность при терапевтических параметрах излучения (0,32 Дж/см2; 0,18 МВт/см2). Зная коэффициент абсорбции излучения в ткани человеческой роговицы в присутствии рибофлавина, было рассчитано, что при стандартной терапевтической мощности излучения (3 МВт/см2) на поверхности роговицы толщиной более 400 мкм, энергия на уровне глубоких слоев роговицы безопасна для эндотелия. Однако в случаях язвы роговицы, развитого кератоконуса с выраженным истончением роговицы стандартная доза воздействия оказывается токсичной для эндотелиальных клеток. В таких случаях рекомендуется использовать альтернативные способы лечения или снижать мощность излучения. Однако, по мнению исследователей, у пациентов с кератоконусом и локальным истончением роговицы на ограниченном участке возможно использование стандартных доз излучения, так как локальная потеря эндотелиальных клеток компенсируется путем миграции с соседних участков [16, 19, 25].
С помощью конфокальной биомикроскопии было выявлено разрежение кератоцитов в передних отделах стромы роговицы, что свидетельствует об их апоптозе и последующем некрозе под воздействием ультрафиолетового излучения заданной мощности. Степень гибели кератоцитов зависела от интенсивности ультрафиолетового излучения. При стандартных терапевтических дозах облучения в роговице человека гибель кератоцитов отмечалась в пределах передних отделов стромы толщиной около 300 мкм. Постепенное восстановление популяции клеток происходило в течение 3 месяцев за счет миграции из зоны неповрежденной роговицы [15].
Кроме того, в первые дни после процедуры было обнаружено исчезновение субэпителиальных нервов. Однако полная реиннервация роговицы с восстановлением ее чувствительности отмечалась уже через 1 месяц [14].
Ни в одном эксперименте не было выявлено помутнения роговицы, хрусталика или признаков воспалительной реакции в глазах животных после комбинированного воздействия рибофлавина и ультрафиолетового облучения [30].
Стандартная методика кросслинкинга роговичного коллагена выполняется амбулаторно в операционной, под местной анестезией с раствором оксибупрокаина 0,4 %. [1]. Шпателем удаляется роговичный эпителий на необходимой площади в зависимости от офтальмопатологии. Начиная с 10 минут до облучения и каждые 5 минут во время процедуры закапывают 0,1 % раствор рибофлавина. UVA облучение проводят с 1 см (или больше в зависимости от точки фокусировки, от используемого прибора) в течении 30 минут с использованием диодов UVA с длиной волны 370 нм и мощностью 3 мВт/см2. Пучок излучения должен быть четко сфокусирован для исключения повреждения области лимба. Инстилляция раствора рибофлавина с последующим воздействием UVA излучения повторяют 5 раз (общее время экспозиции 25 минут, время всей процедуры 30 минут), после чего роговицу промывают физиологическим раствором, закапывают антибиотик, нестероидный противовоспалительный препарат и надевают мягкую контактную линзу. В послеоперационном периоде больному назначают местно антибактериальные и противовоспалительные препараты. После завершения эпителизации в среднем на 5-е сутки снимают МКЛ и назначают инстилляции кортикостероидов и антибиотиков в течение 20 дней [1, 4, 25].
На ряду с традиционной техникой выполнения кросслинкинга роговичного коллагена существует ряд вариаций данного метода: трансэпителиальное облучение роговицы, формирование интрастромальных карманов с использованием фемтолазера, введением в них рибофлавина с последующим UVA-облучением, методика "штриховой" неполной деэпителизации, удаление эпителия с помощью 20 % спирта. Все эти методики в силу объективных причин не нашли широкого применения в офтальмологии [12, 16, 19, 22].
К настоящему времени в мировой практике накоплен достаточно большой опыт клинического применения метода кросслинкинга роговичного коллагена, подтверждающий эффективность и безопасность процедуры для приостановления прогрессирования кератоконуса и повышения остроты зрения.
Единственным побочным эффектом процедуры, по данным ряда авторов, явился кратковременный отек ткани роговицы. Данный эффект отмечался приблизительно в 40 % случаев, сопровождаясь транзиторным повышением среднего сферического коэффициента рефракции [3, 16].
В течение всего периода наблюдения за пролеченными пациентами не было отмечено изменения прозрачности роговицы и хрусталика, плотности эндотелиальных клеток, изменений внутриглазного давления, поражения сетчатки по данным оптической когерентной томографии. В большинстве случаев не потребовалось проведения повторных процедур [20, 26].
Таким образом, многочисленные экспериментальные и клинические исследования показали эффективность и безопасность процедуры рибофлавин-UVA-индуцированного кросслинкинга роговичного коллагена для лечения прогрессирующего кератоконуса. Снижение показателей офтальмометрии, горизонтальной комы, повышение симметричности и ригидности роговицы свидетельствуют об улучшении оптических свойств роговиц пациентов и приостановлении патологического процесса [19].
В большинстве случаев процедура кросслинкинга роговичного коллагена приводила к повышению переносимости контактных линз и улучшению качества жизни пациентов [1, 3].
Другие возможные сферы клинического применения процедуры кросслинкинга роговичного коллагена касаются профилактики регрессии миопии и развития ятрогенной кератэктазии после рефракционной хирургии. Имеются сообщения об успешном использовании процедуры кросслинкинга у пациентов с ятрогенной кератэктазией после операции ЛАСИК. С помощью данной методики удалось повысить биомеханическую прочность роговицы и остановить прогрессирование данного осложнения [12].
В последнее время появились сообщения об успешном использовании метода в клинике при лечении больных с язвой роговицы. Не исключено, что кросслинкинг склерального коллагена станет эффективной методикой повышения ригидности склеры с целью лечения прогрессирующей миопии [4].
На ряду с показаниями к выполнению кросслинкинга имеются и противопоказания: стабильная форма кератоэктазии (увеличение данных кератометрии ≤1,0 Д в течении 12 месяцев), развитая, далекозашедшая стадия кератоконуса с рубцеванием, толщина роговицы ≤400 мкм, герпетический кератит в анамнезе, синдром "сухого глаза", повышение ВГД ≥21 мм рт. ст. [1].
Таким образом, кросслинкинг роговичного коллагена является технически несложным, относительно дешевым, перспективным и гораздо менее инвазивным способом лечения кератоконуса, ятрогенной кератэктазии, эндотелиально-эпителиальной дистрофии и некоторых других патологических состояний роговицы, чем традиционные хирургические методы.
Литература
1. Бикбова Г.М., Бикбов М.М. Терапевтический потенциал кросслинкинга и лечение буллезной кератопатии // Офтальмохирургия. - 2009. - № 2. - С. 7-8.
2. Бикбов М.М., Бикбова Г.М., Хабибуллин А.Ф. Применение кросслинкинга роговичного коллагена в лечении буллезной кератопатии // Офтальмохирургия. - 2011. - № 1. - С. 12-13.
3. Мороз З.И., Ковшун Е.В., Горохова М.В. Кератопластика с использованием кросслинкинг-модифицированного донорского материала при фистуле роговицы // Офтальмохирургия. - 2012. - № 4. - С. 11-12.
4. Brian S., Boxer W. Corneal Collagen Crosslinking with Riboflavin // Cataract and Refract. Surg. Today, Jan. - 2005. - Р. 73-74.
5. Caporossi A., Baiocchi S., Mazzotta C., Traversi C. Parasurgical Therapy of Keratoconus by Riboflavin -UVA -Induced Crosslinking of Corneal Collagen: Preliminary Refractive Results in Italian Study // Curr. Eye Res. - 2003. - № 22. - P. 231-234.
6. Cheng E.L., Maruyama I., Sundar Raj N., Sugar J., Feder R.S., Yue B.Y.J.T. Expression of Type XII Collagen and Hemidesmosomeassociated Proteins in Keratoconus Corneas // Curr. Eye Res. - 2001. - № 23. - P. 333-340.
7. Doxer A., Misof K., Grabner B., Etti A., Fratzi P. Collagen Fibrils in the Human Corneal Stroma: Structure and Aging // Invest. Ophthalmol. Vis. Sci. - 1998. - Vol. 39. - P. 644-648.
8. Fujimori E. Cross-linking and Fluorescence Changes of Collagen by Glycation and Oxidation // Biochimica et Biophisica Acta, 998 (1989). - P. 105-110.
9. Kaufman H.E. Strengthening the Cornea // Cornea. - 2004. - Vol. 23, № 5. - P. 432.
10. Kenney M.C., Nesburn A.B., Burgeson R.E., Butkowski R.J., Ljubimov A.V. Abnormalities of the Extracellular Matrix in Keratoconus Corneas // Cornea. - 1997. - № 16 (3). - Р. 345-351.
11. Khaderm J., Truong T., Ernest J.T. Photodynamic Biologic Tissue Glue // Cornea. - 1994. - Vol. 13. - P. 406-410.
12. Kohlhaas M., Spoerl E., Speck A., Schilde T., Sander D., Pillunat L.E. A New Treatment of Keratectasia after LASIK by Using Collagen with Riboflavin / UVA Light Crosslinking // Klin. Monatsbl. Augenheilkd. - 2005. - Vol. 222 (5). - P. 430-436.
13. Meek K.M., Tuft S.J., Huang Y., et al. Changes in Collagen Orientation and Distribution in Keratoconus Corneas // Invest. Ophthalmol. Vis. Sci. 2005. - Vol. 46, № 6, - P. 1948-1956.
14. Menter J.M., Patta A.M., Sayre R.M., Dowdy J., Willis I. Effect of UV Irradiation on Tipe I Collagen Fibril Formation in Neural Collagen Solutions // Photodermatol. Photoimmunol. Photomed. - 2001. - Vol. 17. - P. 114-120.
15. Muller L.J., Pels E., Vrensen G.F. The Specific Architecture of the Anterior Stroma Accounts for Maintenance of Corneal Curvature // Br. J. Ophthalmol. - 2001. - Vol. 85. - P. 437-443.
16. Rabinowitz Y.S. Major Review Keratoconus // Surv. Ophthalmol., Jan-Feb 1998. - Vol. 42, № 4. - P. 297-319.
17. Radner W., Zehemayer M., Skorpik Ch., Mallinger R. Altered Organization of Collagen in Apex of Keratoconus Corneas // Ophthalmic. Res. 1998. - Vol. 30. - P. 327-332.
18. Scroggs M.W., Proia A.D. Histopathological Variation in Keratoconus // Cornea. - 1992. - Vol. 11. - P. 553-559.
19. Seiler T., Huhle S., Spoerl E., Kunath H. Manifest Diabetes and Keratoconus: a Retrospective Case-Control Study // Graefe's Arch. Clin. Exp. Ophthalmol. - 2000. - Vol. 238. - P. 822-825.
20. Spoerl E., Schreiber J., Hellmund K., Seiler T., Knuschke P. Crosslinking Effects in the Cornea of Rabbits // Ophthalmologe. - 2000. - Vol. 97. - P. 203-206.
21. Spoerl E., Wollensak G., Dittert D., Seiler T. Thermomechanical Behavior of Collagen-Cross-Linked Porcine Cornea // Ophthalmologica. - 2004. - Vol. 218. - P. 136-140.
22. Spoerl E., Wollensak G., Seiler T. Increased Resistance of Crosslinked Cornea against Enzymatic Digestion // Curr. Eye Res. - 2004. - Vol. 29. - P. 35-40.
23. Tuori A.J., Virtanen I., Aine E., Kalluri R., Miner J.H., Uusitalo H.M. The Immunohistochemical Composition of Corneal Basement membrane in Keratoconus // Curr. Eye Res. - 1997. - Vol. 16. - P. 792-801.
24. Wilson S.E., Kim W.G. Keratocyte Apoptosis: Implication on Corneal Wound Healing, Tissue Organization and Disease // Invest. Ophthalmol. Vis. Sci. 1998. - Vol. 39. - P. 220-226.
25. Wollensak G., Spoerl E., Seiler Th. Riboflavin/Ultraviolet-A Induced Collagen Crosslinking for the Treatment of Keratoconus // Am. J. Ophthalmol. - 2003. - Vol. 135. - P. 620-627.
26. Wollensak G., Spoerl E., Seiler Th. Stress Strain Measurements of Human and Porcine Corneas after Riboflavin / Ultraviolet-A Induced Crosslinking // J. Cataract Refract. Surg. - 2003. - Vol. 29. - P. 1780-1785.
27. Wollensak G., Spoerl E., Seiler T. Behandlung von Keratokonus Durch Kollagenvernetzung // Ophthalmologe. - 2003. - Vol. 100. - P. 44-49.
28. Wollensak G., Spoerl E., Wilsh M., Seiler Th. Endothelial Cell Damage after Riboflavin -Ultraviolet -A Treatment in the Rabbit // J. Cataract Refract. Surg. - 2003. - Vol. 29. - P. 1786-1790.
29. Wollensak G., Spoerl E., Wilsch M., Seiler Th. Keratocyte Apoptosis after Corneal Collagen Crosslinking Using Riboflavin / UVA Treatment // Cornea. - 2004. - Vol. 23. - P. 43-49.
30. Wollensak G., Wilsch M., Spoerl E., Seiler T. Collagen Fiber Diameter in the Rabbit Cornea after Collagen Crosslinking by Riboflavin / UVA // Cornea. - 2004. - Vol. 23. - P. 503-507.
31. Zaldaway R.M., Wagner J., Ching S., Seigel G.M. Evidence of Apoptotic Cell Death in Keratoconus // Cornea. - 2002. - Vol. 21. - P. 206-209.
В настоящее время наряду с хирургическими технологиями активно внедряются новые методики лечения патологии роговицы. Одним из таких методов является метод роговичного коллагенового кросслинкинга, который представляет собой фотополимеризацию стромальных волокон и образование стабильных химических связей, возникающих в результате комбинированного воздействия фотосенсибилизирующего вещества (рибофлавина) и ультрафиолетового света. В результате фотополимеризации образуются новые дополнительные внутри- и межфибриллярные связи, что изменяет прочность и устойчивость ткани роговицы.