Поиск | Личный кабинет | Авторизация |
Семь этиологических факторов становления синдрома резистентности к инсулину
Аннотация:
Биологическая роль инсулина - регуляция метаболизма в первую очередь жирных кислот (ЖК) и во вторую - глюкозы; инсулин регулируёт превращение в филогенезе плотоядных (рыбоядных) животных океана в травоядные на суше. Семь этиологических факторов синдрома резистентности к инсулину: 1) соматические клетки не поглощают глюкозу пока есть возможность поглощать ЖК; поглощение клетками ЖК всегда более активно. Чтобы клетки поглощали глюкозу, инсулин лишает их возможности поглощать ЖК в форме неэтерифицированных ЖК (НЭЖК); 2) инсулин обеспечивает наиболее высокую производительность митохондрий в наработке аденозинтрифосфата (АТФ) и высокие параметры кинетики особей. Инсулин опосредованно регулирует метаболизм клетками глюкозы; глюкоза - субстрат для синтеза олеиновой мононенасыщенной ЖК. Среди длинноцепочечных ЖК митохондрии окисляют ее наиболее активно, нарабатывая АТФ; 3) инсулин не может блокировать освобождение в среду НЭЖК, если в висцеральных жировых клетках сальника липолиз активировал филогенетическА более ранний гормон. Инсулин блокирует липолиз только в подкожных адипоцитах; 4) биохимическая активность пальмитиновой насыщен» ной ЖК (НЖК) низкая; высока она у олеиновой мононенасыщенной ЖК (МЖК). В становлении биологической функции локомоции инсулина экспрессирует синтез de novo двух ферментов: пальмитоил-КоА-элонгазы и стеарил-КоА-десатуразы. Они превращают всю синтезирован ную гепатоцитами пальмитиновую НЖК в высокоактивную олеиновую МЖК; 5) инсулин превращает в олеиновую МЖК только пальмитиновую НЖК, которую гепатоциты синтезировали из глюкозы de novo, но не НЖК плотоядной (мясной) пищи; 6) клетки поглощают ЖК в форме олеиновых триглицеридов путем апоЕ/В-100-эндоцитоза много активнее, чем пальмитиновые триглицериды путем апоВ-100-эндоцитоза; 7) недостаток наработки митохондриями АТФ в биологической функции трофологии при окислении митохондриями пальмитиновой НЖК приходится компенсировать путем активации биологической функции адаптации, биологической реакции эндотрофии, липолиза в висцеральных жировых клетках сальника и освобождения НЭЖК. Высокий уровень в крови НЭЖК - наиболее частая причина синдрома резистентности к инсулину. Ключевые слова: инсулин, жирные кислоты, глюкоза, резистентность к инсулину, филогенез. В стремлении понять этиологические факторы филогенеза и патогенез синдрома инсулинорезистентности (ИР) мы просмотрели литературу последних десятилетий, однако обсуждение проблемы длится намного дольше. Что же действительно произошло в филогенезе и происходит in vivo в онтогенезе при становлении синдрома ИР? Мы предлагаем: а) по-иному изложить формирование на ступенях филогенеза семи этиологических факторов синдрома ИР; б) разобрать последовательность становления симптомов в синдроме ИР, взаимосвязь биохимических и функциональных нарушений; в) понять причины столь широкого распространения синдромa ИР в популяциях развитых стран мира. Мы предлагаем синдром ИР (метаболическую пандемию, болезнь цивилизации) рассмотреть в свете предложенной нами филогенетической теории общей патологии. По мнению Д.И.Менделеева, «нет ничего более практичного, чем хорошая теория». Руководствуясь филогенетической теорией общей патологии, мы выделили семь основных «метаболических пандемий» и 7 основных биологических функций. Метаболическими пандемиями являются: 1) атеросклероз и атероматоз - два разных, афизиологичных сочетанных процесса; 2) метаболическая артериальная гипертония; 3) синдром ИР; 4) метаболический синдром; 5) ожирение; 6) неалкогольная жировая болезнь печени; 7) эндогенная гиперурикемия. Общим для всех афизиологичных состояний (за исключением эндогенной гиперурикемии) является значимое нарушение метаболизма жирных кислот (ЖК). Согласно этиологическим факторам, сформированным на ступенях филогенеза, метаболические пандемии в этиологии своей принципиально разные, несмотря на выраженное сходство патогенеза в онтогенезе каждого пациента. Согласно патофизиологии синдром - это не произвольное сочетание симптомов, а симптомокомплекс, который объединяет единый патогенез. Филогенетическая теория общей патологии, биологическая функция трофологии и реакции экзо- и эндотрофии Филогенез мы представляем как единый анамне всего живого на протяжении примерно 4 млрд лет. В процессе эволюции (филогенеза) раздельно, далеко не одновременно, произошло формирование биологические функций; мы насчитали их 7: 1) биологическая функция трофологии; 2) биологическая функция гомеостаза; 3) биологическая функция эндоэкологии; 4) биологическая функция адаптации; 5) биологическая функция продолжения вида; 6) биологическая функция локомоции; 7) когнитивная биологическая функция. Проявлением когнитивной функции на самом высоком уровне является интеллект. Мы считаем, что: а) нарушения биологических функций и биологических реакций лежат в основе 7 метаболических пандемий; б) патогенез каждого афизиологичного процесса рационально исследовать в аспекте филогенеза; в) нет никаких оснований рассматривать фармпре параты как способ профилактики. Применение их оправдано только с лечебной целью, после уяснения того, что мы имеем дело с наследуемым патологическим процессом. Согласно методологическому приему биологической субординации новый гуморальный регулятор in vivo органично надстраивается над ранее существующими гуморальными медиаторами, функционально с ними взаимодействует, но измени ъ регуляторное действие филогенетически более ранних гуморальных медиаторов более поздний регулятор не может. В рамках функции трофологии сформулированы основные постулаты теории адекватного питания. Охарактеризованы основные субстраты, которые поступают из желудочно-кишечного тракта во внутреннюю среду in vivo. Этому сопутствуют биологическая функция эндоэкологии, гуморальная система регуляции пищеварения, специфичное действие микробиоты (факультативно анаэробной микрофлоры толстого кишечника) в реализации специфичного действия субстратов пищи. Запасов энергии, «биологического аккумулятора» in vivo не сформировано, в то же время отработаны: а) функциональные системы запасания субстратов для наработки клетками энергии; б) варианты быстрого их освобождения из клеточных депо, перенос к митохондриям; в) поглощение органеллами и окисление субстратов в матриксе с наработкой макроергического аденозинтрифосфата (АТФ). Для понимания взаимоотношения субстратов, наработки энергии при поглощении клетками ЖК и глюкозы на аутокринном (клеточном уровне) рационально обратиться к самым ранним ступеням филогенеза. Липидами, мы полагаем, являются все ЖК и соединения, в которые ЖК входят. Если холестерин (ХС) - это спирт, то эфир его с олеиновой ЖК является липидом. В зависимости от того, какая ЖК этерифицирована в позиции sn-2 (вторичный гидроксил трехатомного спирта глицерина), все триглицериды (ТГ) мы разделяем на пальмитиновые, олеиновые, стеариновые, линолевые и линоленовые. Ни одна внеклеточная липаза не может гидролизовать эфиры ЖК с глицерином в sn-2 спирта. Субстраты для наработки АТФ, ЖК и глюкоза на аутокринном, клеточном, уровне. Несколькими миллиардами лет ранее в глубинах мирового океана самые ранние одноклеточные стали из уксусной кислоты, ацетата, ацетил-КоА еще минерального происхождения синтезировать ЖК, далее постепенно сформировались самые ранние одноклеточные арЯеи. Они были экзотрофами, и все, что необходимо для жизни, поглощали из внешней среды. Миллионы лет в полной темноте археи для покрытия потребностей в энергии окисляли в цикле Кребса и физико-химических реакциях дыхательной цепи только ацетил-КоА из короткоцепочечных ЖК, нарабатывая АТФ. Единственную длинноцепочечную С16:0 пальмитиновую насыщенную ЖК (НЖК) археи использовали для построения клеточной мембраны. За миллионы лет анаэробы синтез глюкозы так и не начали. И только когда биологических субстратов в океане наработано такое количество, что они достигли поверхностных слоев океана, которые освещены солнцем, следующие миллионы лет проходило образование иных одноклеточных - автотрофов. Они, используя энергию квантов солнца, физико-химические реакции фотосинтеза, цикл Кальвина, начали из таких субстратов, как Н20 и С02, синтезировать глюкозу - СбН. В процессе фотосинтеза глюкозы автотрофы нарабатывали 02, формируя атмосферу Земли; жить анаэробам археям становилось явно неудобно. В конце концов произошел исторический симбиоз - слияние автотрофов с археями; автотрофы поглотили архей с митохондриями и с их геномом. Производными ранних в филогенезе архей in vivo, ранее симбиоза их с автотрофами, являются все соматические клетки. Производными от ранних автотрофов, до слияния с археями, являются клетки нервной системы. За миллионы лет в филогенезе у соматических клеток механизмы активированного поглощения ЖК (активность СОЗб-транслоказы) стали намного более совершенными, чем пассивное поглощение глюкозы, по градиенту концентрации через ранние глюкозные транспортеры (ГЛЮТ) тип 1-3. Когда транслоказа CD36 вводит в цитоплазму не-этерифицированные ЖК (НЭЖК), специфичные белки, переносящие ЖК в цитоплазме, быстро доставляют их к митохондриям; они быстро поглощают ЖК, окисляют в матриксе, нарабатывая АТФ. Физиологично концентрация ЖК в цитоплазме клеток в форме НЭЖК составляет лишь следовые количества. В цитоплазме НЭЖК практически нет. Концентрация же глюкозы в цитоплазме клеток физиологично лишь несколько ниже, чем в межклеточной среде.
Авторы:
Титов В.Н.
Издание:
Consilium medicum
Год издания: 2018
Объем: 7с.
Дополнительная информация: 2018.-N 4.-С.68-74. Библ. 31 назв.
Просмотров: 60