Поиск | Личный кабинет | Авторизация |
СРАВНЕНИЕ ПРОГНОСТИЧЕСКИХ МОДЕЛЕЙ, ПОСТРОЕННЫХ С ПОМОЩЬЮ РАЗНЫХ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ, НА ПРИМЕРЕ ПРОГНОЗИРОВАНИЯ РЕЗУЛЬТАТОВ ЛЕЧЕНИЯ БЕСПЛОДИЯ МЕТОДОМ ВСПОМОГАТЕЛЬНЫХ РЕПРОДУКТИВНЫХ ТЕХНОЛОГИЙ
Аннотация:
В репродуктивной медицине развитие машинного обучения (МО) привело к созданию большого количества вспомогательных программных продуктов. Прогнозирование результативности программы вспомогательных репродуктивных технологий (ВРТ) при помощи МО может быть осуществлено с использованием различных алгоритмов в зависимости от типа данных и поставленной задачи. Цель: Сравнение прогностической способности логистической регрессии, алгоритма решающего дерева и Random Forest в отношении вероятности наступления беременности на основании клиникоанамнестических и эмбриологических данных пациентов в программе ВРТ. В ретроспективное исследование были включены 854 супружеские пары. В исследовании были проанализированы клинико-лабораторные данные и параметры стимулированного цикла в зависимости от результативности программы ВРТ при помощи трех алгоритмов МО: логистической регрессии, решающего дерева и Random Forest. В результате наиболее точным алгоритмом прогнозирования частоты наступления беременности в программе ВРТ стала модель на основе Random Forest, которая определила значимость следующих предикторов: остановка эмбрионов в развитии, триггер финального созревания ооцитов, количество эмбрионов отличного и среднего качества, продолжительность стимуляции, фактор бесплодия, индекс массы тела, уровни ФСГ и АМГ; а также подтвердила значимость предикторов, которые были определены на предыдущих этапах работы, при помощи алгоритма решающего дерева: наличие/ отсутствие беременностей в анамнезе, параметры стимулированного цикла (число ооцитов МП), показатели спермограммы в день пункции, количество эмбрионов отличного и хорошего качества, а также качество эмбриона согласно морфологическим критериям оценки. Заключение: Для улучшения прогнозирования эффективности программы ВРТ требуются более качественные математические модели с интегральным подходом к решению задачи с использованием большой выборки пациентов с различными входными данными, представленными в сбалансированном объеме, а также дополнительные маркеры, определяющие эффективность программы ВРТ, позволяющие улучшить точность программного продукта.
Авторы:
Драпкина Ю.С.
Издание:
Акушерство и гинекология
Год издания: 2024
Объем: 9с.
Дополнительная информация: 2024.-N 2.-С.97-105. Библ. 21 назв.
Просмотров: 12