Поиск | Личный кабинет | Авторизация |
Разработка и тестирование новых методических подходов прогнозирования сердечно-сосудистых событий у здоровых людей с использованием технологии машинного обучения на базе международного исследования «Интерэпид»
Аннотация:
В 2023 г. сердечно-сосудистые заболевания оставались основной причиной смерти во всем мире. С целью снижения бремени этой патологии ключевым вектором развития современной медицины является профилактика. На сегодняшний день основными инструментами мониторинга являются шкалы оценки абсолютного и относительного сердечно-сосудистого риска. Однако в связи с развитием информационных технологий все больше исследователей рассматривают использование технологий искусственного интеллекта для прогноза болезней сердца. Цель исследования. Разработать и выполнить тестирование новых методических подходов прогнозирования сердечно-сосудистых событий у здоровых людей с использованием технологий искусственного интеллекта. Работа выполнена на основе данных международного исследования «Интерэпид». Состав выборки: 2392 участников, прошедших наблюдение в течение 4 лет, из них 1022 (42,7%) мужчины, 1369 (57,2%) женщин. В анализ включен 191 предиктор. Для создания моделей прогноза мы использовали 5 алгоритмов классификации на среде программирования Python: RandomForestClassifier, GradientBoostingClassifier, ExtraTreesClassifier, XCBCIassifier, LGBMCIassifier. Для оценки эффективности моделей прогноза использовали ROC-анализ. В результате наиболее эффективным алгоритмом оказался GradientBoostingClassifier с AUC-0,76. Наихудший результат продемонстрировал ExtraTreesClassifier с AUC-0,68. Наиболее значимыми факторами риска стали возраст, уровень С-реактивного белка в крови и факт потребления животного жира. Заключение. В результате исследования нам удалось получить алгоритм прогноза с относительно хорошим качеством дискриминации. Для совершенствования данной разработки необходимо проведение дальнейших исследований на больших объемах данных.
Авторы:
Мишкин И.А.
Издание:
Профилактическая медицина
Год издания: 2024
Объем: 8с.
Дополнительная информация: 2024.-N 3.-С.72-79. Библ. 27 назв.
Просмотров: 4